Bog plant/lichen tissue nitrogen and sulfur concentrations as indicators of emissions from oil sands development in Alberta, Canada.

2021 
Increasing gaseous emissions of nitrogen (N) and sulfur (S) associated with oil sands development in northern Alberta (Canada) has led to changing regional wet and dry N and S deposition regimes. We assessed the potential for using bog plant/lichen tissue chemistry (N and S concentrations, C:N and C:S ratios, in 10 plant/lichen species) to monitor changing atmospheric N and S deposition through sampling at five bog sites, 3-6 times per growing season from 2009 to 2016. During this 8-year period, oil sands N emissions steadily increased, while S emissions steadily decreased. We examined the following: (1) whether each species showed changes in tissue chemistry with increasing distance from the Syncrude and Suncor upgrader stacks (the two largest point sources of N and S emissions); (2) whether tissue chemistry changed over the 8 year period in ways that were consistent with increasing N and decreasing S emissions from oil sands facilities; and (3) whether tissue chemistry was correlated with growing season wet deposition of NH4+-N, NO3--N, or SO42--S. Based on these criteria, the best biomonitors of a changing N deposition regime were Evernia mesomorpha, Sphagnum fuscum, and Vaccinium oxycoccos. The best biomonitors of a changing S deposition regime were Evernia mesomorpha, Cladonia mitis, Sphagnum fuscum, Sphagnum capillifolium, Vaccinium oxycoccos, and Picea mariana. Changing N and S deposition regimes in the oil sands region appear to be influencing N and S cycling in what once were pristine ombrotrophic bogs, to the extent that these bogs may effectively monitor future spatial and temporal patterns of deposition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []