The photosynthetic performance of a cultivated Japanese green alga Caulerpa lentillifera in response to three different stressors, temperature, irradiance, and desiccation

2021 
The effects of temperature, irradiance, and desiccation on the photosynthesis of a cultivated Japanese green alga Caulerpa lentillifera (Caulerpaceae) were determined by a pulse amplitude modulation (PAM)-chlorophyll fluorometer and dissolved oxygen sensors. The photochemical efficiency in the photosystem II (Fv/Fm and ΔF/Fm') during the 72-h temperature exposures (8, 12, 16, 20, 24, 28, 32, 36, and 40°C) was generally stable at 16–32°C but quickly dropped at lower and higher temperatures. The photosynthesis–temperature curve at 200 μmol photons m−2 s−1 also revealed that the maximum gross photosynthesis (GPmax) occurred at 30.7°C (30.5–30.9, 95% highest density credible intervals). Photosynthesis–irradiance curves at 16, 24, and 32°C quickly saturated, then expressed photoinhibition, and revealed that the maximum net photosynthetic rates (NPmax) and saturation irradiance (Ek) were highest at 32°C and lowest at 16°C. Continuous 6-h exposure to irradiances of 200 (low) and 400 (high) μmol photons m−2 s−1 at 16, 24, and 32°C expressed greater declines in their ΔF/Fm' at 16°C, revealing chronic chilling-light stress. The response to continuous desiccation (~480 min) under 50% humidity at 24°C showed that ΔF/Fm' dropped to zero at 480-min aerial exposure, and the treatments of more than 60-min desiccation did not return to the initial level even after 24-h subsequent rehydration in seawater. Likewise, ΔF/Fm' fell when the absolute water content (AWC) of the frond dropped below AWC of 90% and mostly did not return to the initial level even after 24-h subsequent rehydration in seawater, signifying a low tolerance to desiccation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    3
    Citations
    NaN
    KQI
    []