A Signal Processing Framework for Agile RF Beamforming: From RF-Chain-Free to Hybrid Beamformers

2021 
In conventional hybrid beamforming approaches, the number of radio-frequency (RF) chains is the bottleneck on the achievable spatial multiplexing gain. Recent studies have overcome this limitation by increasing the update-rate of the RF beamformer. This paper presents a framework to design and evaluate such approaches, which we refer to as agile RF beamforming, from theoretical and practical points of view. In this context, we consider the impact of the number of RF-chains, phase shifters speed, and resolution to design agile RF beamformers. Our analysis and simulations indicate that even an RF-chain-free transmitter, which its beamformer has no RF-chains, can provide a promising performance compared with fully-digital systems and significantly outperform the conventional hybrid beamformers. Then, we show that the phase shifter’s limited switching speed can result in signal aliasing, in-band distortion, and out-of-band emissions. We introduce performance metrics and approaches to measure such effects and compare the performance of the proposed agile beamformers using the Gram-Schmidt orthogonalization process. Although this paper aims to present a generic framework for deploying agile RF beamformers, it also presents extensive performance evaluations in communication systems in terms of adjacent channel leakage ratio, sum-rate, power efficiency, error vector magnitude, and bit-error rates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []