Thermal Control of Plasmonic Surface Lattice Resonances.

2021 
Plasmonic metasurfaces exhibiting collective responses known as surface lattice resonances (SLRs) show potential for realizing tunable and flat photonic components for wavelength-selective processes, including lasing and optical nonlinearities. However, post-fabrication tuning of SLRs remains challenging, limiting the applicability of SLR-based components. Here, we demonstrate how the properties of high quality factor SLRs are easily modified by breaking the symmetry of the nanoparticle surroundings. We break the symmetry by changing the refractive index of the overlying immersion oil simply by controlling the ambient temperature of the device. We show that already modest temperature changes of 10{\deg}C can increase the quality factor of the investigated SLR from 400 to 750. Our results demonstrate accurate and reversible modification of the properties of the SLRs, paving the way towards tunable SLR-based photonic devices. On a more general level, our results demonstrate how symmetry breaking of the surrounding dielectric environment can be utilized for efficient and potentially ultrafast modification of the SLR properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []