A New Model of Lithosphere Deformation Beneath the Okinawa Trough Based on Gravity Data

2002 
The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the collision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation than that in the northern part. The mechanisms that cause distinction between these two types have been analysed and calculated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction boundary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and the small extension in the northern part. The difference of the stress state between the two types of subduction model is also manifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric and gravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlying plate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in the southern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction of high angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in the northern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northern Ryukyu Trench stand in small stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []