Closed-loop correction and ocular wavefronts compensation of a 62-element silicon unimorph deformable mirror

2015 
Adaptive optics (AO) systems greatly improve the resolution of retinal imaging instruments by actively correcting ocular aberrations. In this Letter, closed-loop correction as well as ocular aberration compensation of a 62-element silicon unimorph deformable mirror (DM) driven by only positive voltage is performed. The experimental results show that the root-mean square (RMS) wavefront of the initial mirror surface is reduced to 0.011 μm in a closed-loop AO system. The DM reproduces Zernike shapes from the third to 35th mode accurately. The simulated compensation of 200 ocular wavefronts shows that the average RMS value after correction is reduced to 0.017 μm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []