Measuring the total infrared light from galaxy clusters at z=0.5-1.6: connecting stellar populations to dusty star formation

2020 
Massive galaxy clusters undergo strong evolution from z~1.6 to z~0.5, with overdense environments at high-z characterized by abundant dust-obscured star formation and stellar mass growth which rapidly give way to widespread quenching. Data spanning the near- to far-infrared (IR) spectrum can directly trace this transformation; however, such studies have largely been limited to the massive galaxy end of cluster populations. In this work, we present ``total light" stacking techniques spanning 3.4-500{\mu}m aimed at revealing the total cluster IR emission, including low mass members and potential intracluster dust. We detail our procedures for WISE, Spitzer, and Herschel imaging, including corrections to recover the total stacked emission in the case of high fractions of detected galaxies. We apply our stacking techniques to 232 well-studied massive (log M200/Msun~13.8) clusters across multiple z bins, recovering extended cluster emission at all wavelengths, typically at >5sigma. We measure the averaged near- to far-IR radial profiles and SEDs, quantifying the total stellar and dust content. The near-IR radial profiles are well described by an NFW model with a high (c~7) concentration parameter. Dust emission is similarly concentrated, albeit suppressed at small radii (r 10) cluster galaxies. Separating out the massive galaxy population reveals that the majority of cluster far-IR emission (~70-80%) is provided by the low mass constituents, which differs from field galaxies. This effect may be a combination of mass-dependent quenching and excess dust in low mass cluster galaxies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    209
    References
    0
    Citations
    NaN
    KQI
    []