Shock-driven transition to turbulence: emergence of power-law scaling

2016 
We consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front, and baroclinic vorticity deposited by the shock is predominantly two-dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction, and a fully three-dimensional shock-induced vorticity field. The statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity maps of fluorescent tracer pre-mixed with the heavy gas. At later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0 to 30 degrees).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []