The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation

2021 
Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N-terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/Enhancer Binding Protein Homologous Protein). FUS functions in RNA metabolism and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. The FUS segment is required for oncogenic transformation, but the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers were proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N-terminus, transcriptional activation by FUS-CHOP could result from the N-terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate FUS-CHOP forms phase-separated condensates at super enhancer transcriptional sites. We provide strong evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for treatment of myxoid liposarcoma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    2
    Citations
    NaN
    KQI
    []