Approaching itinerant magnetic quantum criticality through a Hund's coupling induced electronic crossover in the YFe$_2$Ge$_2$ superconductor

2020 
Here, by conducting a systematic $^{89}$Y NMR study, we explore the nature of the magnetic ground state in a newly discovered iron-based superconductor YFe$_2$Ge$_2$. An incoherent-to-coherent crossover due to the Hund's coupling induced electronic correlation is revealed below the crossover temperature $T^*\sim 75\pm15\,\mathrm{K}$. During the electronic crossover, both the Knight shift ($K$) and the bulk magnetic susceptibility ($\chi$) exhibit a similar nonmonotonic temperature dependence, and a so-called Knight shift anomaly is also revealed by a careful $K$-$\chi$ analysis. Such an electronic crossover has been also observed in heavily hole-doped pnictide superconductors \emph{A}Fe$_2$As$_2$ (\emph{A} = K, Rb, and Cs), which is ascribed to the Hund's coupling induced electronic correlation. Below $T^*$, the spin-lattice relaxation rate divided by temperature $(1/T_1T)$ shows a similar suppression as the Knight shift, suggesting the absence of critical spin fluctuations. This seems to be in conflict with a predicted magnetic quantum critical point (QCP) near this system. However, considering a $\mathbf{q}$-dependent "filter" effect on the transferred hyperfine field, a predominant spin fluctuation with A-type correlation would be perfectly filtered out at $^{89}$Y sites, which is consistent with the recent inelastic neutron scattering results. Therefore, our results confirm that, through a Hund's coupling induced electronic crossover, the magnetic ground state of YFe$_2$Ge$_2$ becomes close to an itinerant magnetic QCP with A-type spin fluctuations. In addition, the possible superconducting pairing due to spin fluctuations is also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    3
    Citations
    NaN
    KQI
    []