Effects of Colored Enrichment Devices on Circadian Metabolism and Physiology in Male Sprague-Dawley Rats.

2016 
: Environmental enrichment (EE) gives laboratory animals opportunities to engage in species-specific behaviors. However, the effects of EE devices on normal physiology and scientific outcomes must be evaluated. We hypothesized that the spectral transmittance (color) of light to which rats are exposed when inside colored enrichment devices (CED) affects the circadian rhythms of various plasma markers. Pair-housed male Crl:SD rats were maintained in ventilated racks under a 12:12-h light:dark environment (265.0 lx; lights on, 0600); room lighting intensity and schedule remained constant throughout the study. Treatment groups of 6 subjects were exposed for 25 d to a colored enrichment tunnel: amber, red, clear, or opaque. We measured the proportion of time rats spent inside their CED. Blood was collected at 0400, 0800, 1200, 1600, 2000, and 2400 and analyzed for plasma melatonin, total fatty acids, and corticosterone. Rats spent more time in amber, red, and opaque CED than in clear tunnels. All tubes were used significantly less after blood draws had started, except for the clear tunnel, which showed no change in use from before blood sampling began. Normal peak nighttime melatonin concentrations showed significant disruption in the opaque CED group. Food and water intakes and body weight change in rats with red-tinted CED and total fatty acid concentrations in the opaque CED group differed from those in other groups. These results demonstrate that the color of CED altered normal circadian rhythms of plasma measures of metabolism and physiology in rats and therefore might influence the outcomes of scientific investigations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    6
    Citations
    NaN
    KQI
    []