Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior

2021 
Resting-state functional MRI (rs-fMRI) allows estimation of individual-specific cortical parcellations. We have previously developed a multi-session hierarchical Bayesian model (MS-HBM) for estimating high-quality individual-specific network-level parcellations. Here, we extend the model to estimate individual-specific areal-level parcellations. While network-level parcellations comprise spatially distributed networks spanning the cortex, the consensus is that areal-level parcels should be spatially localized, i.e., should not span multiple lobes. There is disagreement about whether areal-level parcels should be strictly contiguous or comprise multiple non-contiguous components, therefore we considered three areal-level MS-HBM variants spanning these range of possibilities. Individual-specific MS-HBM parcellations estimated using 10min of data generalized better than other approaches using 150min of data to out-of-sample rs-fMRI and task-fMRI from the same individuals. Resting-state functional connectivity (RSFC) derived from MS-HBM parcellations also achieved the best behavioral prediction performance. Among the three MS-HBM variants, the strictly contiguous MS-HBM (cMS-HBM) exhibited the best resting-state homogeneity and most uniform within-parcel task activation. In terms of behavioral prediction, the gradient-infused MS-HBM (gMS-HBM) was numerically the best, but differences among MS-HBM variants were not statistically significant. Overall, these results suggest that areal-level MS-HBMs can capture behaviorally meaningful individual-specific parcellation features beyond group-level parcellations. Multi-resolution trained models and parcellations are publicly available (GITHUB_LINK).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    119
    References
    6
    Citations
    NaN
    KQI
    []