Human skeletal muscle-derived stem/progenitor cells modified with connexin-43 prevent arrhythmia in rat post-infarction hearts and influence gene expression in the myocardium.

2019 
Stem cell therapy in combination with genetic modification (e.g., transfection with the coding sequence for the connexion 43 gene, GJA1) may solve the problems associated with the occurrence of additional (secondary) stimulation in the post-infarcted heart (arrhythmia). Human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) were transfected with the pCiNeo-GJA1 plasmid at an efficiency of approximately 96%. Gene overexpression was assessed using qPCR, and subsequent analysis revealed that GJA1 expression increased more than 40-fold in SkMDS/PCs transfected with the appropriate coding sequence (SkMDS/PCsCX43) compared to that of the 'native' SkMDS/PCs control (SkMDS/PCsWT). Enhanced (4-fold) protein expression of connexin-43 was also confirmed by Western immunoblotting. Furthermore, using the arrhythmic score, we demonstrated the positive effects of SkMDS/PCsCX43 cell intervention in reducing additional secondary stimulations in rat post-infarcted hearts compared with that of wild-type cell delivery. Selected gene responses (Kcnq1, Cacna1c, Ncx1, Serca2a, and Tgfb1) showed significantly altered expression profiles in the rat myocardium upon intervention with SkMDS/PCsCX43. The genetic modification of human skeletal muscle-derived stem/progenitor cells with connexin-43 prevented the pro-arrhythmic effects of myogenic implanted stem cells on the host myocardium and positively influenced myocardial gene expression profiles in respect to myocardium conductivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []