Ambient pressure CO2 hydrogenation over a cobalt/manganese-oxide nanostructured interface: A combined in situ and ex situ study

2020 
Abstract We report on a cobalt/manganese-oxide interface catalyst with outstanding activity and selectivity towards methane even at high temperatures and ambient pressure in CO2 hydrogenation. The catalyst was formed from a MnCo2O4-based spinel structure during the oxidative-reductive pretreatment process just before the catalytic tests. Several Mn-, Fe- and Ni-containing cobaltite spinel and reverse spinel structures were tested to find the best overall performer. The reusable MnCo2O4-based structure featured a CO2 consumption rate of ~8500 nmol*g−1*s−1. Even though methane is not the thermodynamically favoured product, it was produced with ~80% and ~50% selectivity at ambient pressure at 673 K and 823 K, respectively. This unexpected finding is linked to the presence of a unique nanostructured Co/Mn(II)O catalyst with a surface composition of Mn3.3Co2.0O4.7 formed after the pretreatment activation step. Over this phase, the reduction of CO2 progresses through bridge bonded formate located at the Co/Mn2+ interface and this is mostly responsible for high temperature methane formation. This hypothesis is proven here by the reported combination of ex-situ XRD, TPR, HRTEM-ED, HAADF-EDX and in-situ NAP-XPS and DRIFTS techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    9
    Citations
    NaN
    KQI
    []