Parallel Inverters Control in Standalone Microgrid using different Droop Control Methodologies and Virtual Oscillator Control

2021 
Renewable Energy Sources (RES) have been found as viable alternatives for conventional power generation systems in recent times. The power electronic-based converters are the main medium of interface for connecting RES to the utility grid system. The prime focus of this paper is on inverter coordination methods to maintain system stability. The work is also attentive on the comparative examination of simple droop control, modified droop control, and Virtual Oscillator Control (VOC) methods for the control of parallel inverters operating in the standalone Microgrid (MG). The two different droop control methods are operated based on the active and reactive powers, which are phasor quantities, measured by sensed output voltage and current. Because of the phasor quantities, the dynamic response of the droop controller is insignificant. The VOC control mechanism works on instant current feedback signals, such that the dynamic performance of the system differs remarkably. The simulation results and the Opal-RT real-time digital simulation results corroborate that VOC gives a superior dynamic performance as compared to droop control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []