Study on the Cavity Forming Induced by a Gas Jet Impinging on a Liquid Surface Based on a Deformed Mesh Method

2021 
The current study focuses on the cavity formation induced by jet impingement with the help of numerical simulations based on a deformed mesh method. The interface between the liquid phase and gas phase separates the calculation domain into two single-phase domains, which exchange momentum data except for mass transfer. For the subsonic jet flow, the results show that the cavity depth is a decreasing function when the blowing height is increased, while the cavity diameter increases when increasing the blowing height. In addition, larger diameter of the nozzle will result in a deeper cavity because the jet flow attenuation becomes weaker. The simulation result shows good agreement with that of the theoretical equation on the cavity depth and diameter for the subsonic jet flow. In addition, the cavity formation created by the supersonic flow, which is treated as a compressible flow, can also be described by the developed model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []