Characterization of Pre-bond Contamination and Aging Effects for CFRP Bonded Joints Using Reference Laboratory Methods, Mechanical Tests, and Numerical Simulation

2021 
In this chapter, the pre-bond contamination and ageing effects on carbon fiber reinforced plastic (CFRP) adherends and CFRP bonded joints are characterized by means of reference laboratory non-destructive testing (NDT) methods, mechanical tests, and numerical simulation. Contaminations from two fields of application are considered, namely in aircraft manufacturing (i.e. production) and for in-service bonded repair. The production-related scenarios comprise release agent, moisture, and fingerprint, while the repair-related scenarios comprise fingerprint, thermal degradation, de-icing fluid, and a faulty curing of the adhesive. For each scenario, three different levels of contamination were pre-set and applied, namely low, medium and high level. Furthermore, two types of samples were tested, namely coupons and pilot samples (a stiffened panel and scarf repairs). The CFRP adherends were contaminated prior to bonding and the obtained surfaces were characterized using X-ray photoelectron spectroscopy. After bonding, the joints were tested by ultrasonic testing. To characterize the effects of each contamination on the strength of the bonded joints, mode-I and mode-II fracture toughness tests, and novel centrifuge tests were conducted on the coupons, while tensile tests were performed on the scarfed samples. Additionally, numerical simulation was performed on CFRP stiffened panels under compression using the LS-DYNA finite element (FE) platform.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []