Contextual Equilibrium Effects in DNA Molecules

2001 
Abstract The thermodynamic parameters of DNA triplex formation between oligonucleotides and double-stranded DNA segments containing adenine runs (A-tracts) were investigated to explore equilibrium structural effects exerted by flanking segments upon the A-tracts. Results obtained from isothermal titration calorimetry, temperature-dependent circular dichroism (CD), and UV melting experiments indicate that A-tracts, considered as a uniquely robust and inflexible DNA motif, can be structurally perturbed by neighboring sequences in a way that significantly affects the propensity of this motif to interact with triplex-forming oligonucleotides. These contextual equilibrium effects, which depend upon the composition and location of the flanking sequences, are likely to apply not only to the interaction of A-tracts with single-stranded DNA molecules but also to interactions with drugs and proteins. As such, the current results refine the guidelines for the design of triplex-forming oligonucleotides used for antigene strategies. More generally, they substantiate the notion that significant data might be encoded by structural DNA parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []