Foundations of a laser-accelerated plasma diagnostics and beam stabilization with miniaturized Rogowski coils

2018 
Abstract In order to introduce spatially resolved measurements of the plasma density in a plasma accelerated by a laser, a novel concept is proposed in this work. We suggest the usage of an array of miniaturized Rogowski coils to measure the current contributions parallel to the laser beam with a spatial resolution in the sub-mm range. The principle of the experimental setup will be shown in 3-D CAD models. The coils are coaxial to the plasma channel (e.g. a hydrogen filled capillary, which is frequently used in laser-plasma acceleration experiments). This plasma diagnostics method is simple, robust and it is a passive measurement technique, which does not disturb the plasma itself. As such coils rely on a Biot–Savart inductivity, they allow to separate the contributions of the parallel from perpendicular currents (with respect to the laser beam). Rogowski coils do not have a ferromagnetic core. Hence, non-linear effects resulting from such a core are to be neglected, which increases the reliability of the obtained data. They also allow the diagnosis of transient signals that carry high currents (up to several hundred kA) on very short timescales. Within this paper some predictions about the time resolution of such coils will be presented along with simple theoretical considerations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []