Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae.

2020 
: Metabolic engineering of Saccharomyces cerevisiae for high level production of aromatic chemicals has received increasing attention in recent years. Tyrosol production from glucose by S. cerevisiae is considered an environmentally sustainable and safe approach. However, the production of tyrosol and salidroside by engineered S. cerevisiae has been reported to be lower than 2 g/L to date. In this study, S. cerevisiae was engineered with a push-pull-restrain strategy to efficiently produce tyrosol and salidroside from glucose. The biosynthetic pathways of ethanol, phenylalanine and tryptophan were restrained by disrupting PDC1, PHA2 and TRP3. Subsequently, tyrosol biosynthesis was enhanced with a metabolic pull strategy of introducing PcAAS and EcTyrAM53I/A354V . Moreover, a metabolic push strategy was implemented with the heterologous expression of phosphoketolase (Xfpk), and then Erythrose 4-phosphate was synthesized simultaneously by two pathways, the Xfpk-based pathway and the pentose phosphate pathway, in S. cerevisiae. Furthermore, the heterologous expression of Xfpk alone in S. cerevisiae efficiently improved tyrosol production compared with the coexpression of Xfpk and phosphotransacetylase. Finally, the tyrosol yield increased by approximately 135-folds, compared with that of parent strain. The total amount of tyrosol and salidroside with glucose fed-batch fermentation was over 10 g/L and reached levels suitable for large-scale production. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    11
    Citations
    NaN
    KQI
    []