A new strategy for obtaining highly concentrated phosphorus recovery solution in biofilm phosphorus recovery process

2022 
Abstract Recovery of phosphorus (P) from wastewater is of great significance for alleviating the shortage of P resources. At present, the P recovery process is faced with the problem of excessive organic carbon consumption when obtaining a P-concentrated recovery solution. This study proposed a new strategy to obtain a more highly concentrated P recovery solution with minimal carbon consumption by strengthening the P storage capacity of the biofilm. A biofilm sequencing batch reactor (BSBR) process was modified to treat synthetic wastewater. The effect of the dissolved oxygen (DO) concentration on the P storage capacity of the biofilm was investigated at DO concentrations of DO 3.5 mg/L (PL) and DO 6.5 mg/L (PH). The results showed a maximum P storage of 101.2 and 149.6 mg-P/g-mixed liquid suspended solids under the two conditions. Strengthening the P storage capacity of the biofilm resulted in a net increase in the P recovery rate, which was as high as 66.96% in a harvesting cycle, and total soluble P>220 mg/L in the P recovery solution was successfully achieved. Meanwhile, the carbon cost of P recovery in the BSBR was reduced to 41.57 g-chemical oxygen demand/g-P, and the carbon utilization efficiency was enhanced. To highlight the new strategy, the P recovery performance of the BSBR was given and the relationship between P content and anaerobic P release was discussed. In addition, the changes in the microbial communities under PL and PH conditions were analyzed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []