Intrinsic Room-Temperature Ferromagnetism in V2C MXene Nanosheets.

2021 
Two-dimensional (2D) materials with intrinsic magnetic properties are intensively explored due to their potential applications in low-power-consumption electronics and spintronics. To date, only a handful of intrinsic magnetic 2D materials have been reported. Here, we report a realization of intrinsic ferromagnetic behavior in 2D V2C MXene nanosheets through layer mismatch engineering. The V2C MXene nanosheets with a small-angle twisting show a robust intrinsic ferromagnetic response with a saturation magnetic moment of 0.013 emu/g at room temperature. An in-depth study has been performed by X-ray absorption spectroscopy as well as electron paramagnetic resonance (EPR) and photoelectron spectroscopy analyses. It has been revealed that the symmetry-broken interlayer twisting reduced the degeneracy of V 3d states and the van Hove singularity. This led to a redistribution of the density of electronic states near the Fermi level and consequently activated the Stoner ferromagnetism with improved density of itinerant d electrons. This work highlights V2C MXene as a promising intrinsic room-temperature ferromagnetic material with potential applications in spintronics or spin-based electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    2
    Citations
    NaN
    KQI
    []