Effect of gestational and lactational exposure to heat stress on performance in rabbits

2017 
Reproductive performance is greatly affected by environmental factors such as temperature. Heat stress (HS) during pregnancy and lactation can influence not only foetal growth but also postnatal development of kits. The aim of this study was to test the effect of HS during gestation and lactation on postnatal growth till Spanish commercial liveweight. To investigate this, 32 primiparous non lactating rabbit does were exposed to 1 of 2 environmental treatments: high temperature (between 25 and 36°C, HS group; n=16) or thermoneutral conditions (between 14 and 20°C, TN group; n=16). Does were allowed to acclimate 30 d before the artificial insemination. At birth, kits were allocated into 4 groups: HS was only applied during gestation (G group; n=54); HS was applied during gestation and lactation period (GL group; n=85); HS was only applied during lactation period (L group; n=60); and TN was applied during gestation and lactation period (C group; n=77). All litters were kept under each experimental environment until weaning at day 30. Then, litters were moved to TN temperatures until slaughter at day 63. Compared with TN does, the HS does presented lower litter size (9.7 and 11.4; P<0.05), litter weight (503.0 vs. 630.5 g; P<0.05) and kit weight at birth (56.6 vs. 61.4 g; P<0.05), as well as a higher stillborn rate (25.4 vs. 9.9%; P<0.05). The kits from does subjected to HS during gestation (G group) had similar postnatal growth compared to offspring from does gestated in TN conditions (C group), whereas kits from does that experienced HS during gestation and lactation (GL group) and during their lactation (L group) presented decreased postnatal growth. Together, these results demonstrate that kits from does that underwent HS during gestation did not alter postnatal growth until Spanish commercial liveweight, whereas HS during lactation resulted in decreased postnatal growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    6
    Citations
    NaN
    KQI
    []