Thermal fluctuations in perpendicular recording media: New methodology for estimation of activation moment

2011 
In nanoparticulate films with perpendicular magnetic anisotropy, a large demagnetizing field almost compensates for the experimentally designed change in the magnetic field applied parallel to the film normal. We propose a new method based on field-cycling to eliminate the uncertainty in the demagnetizing response from the analysis of the activation volume of the reversal or magnetic activation moment in such films. In this method, the applied field induced variation in the magnetic relaxation rate is measured before the effect of the demagnetizing field becomes dominant. We also discuss an analogical thermal-cycling method to clarify the temperature dependence of the barrier height for magnetization reversal in a magnetic field. We apply these methods to a Co74Pt16Cr10-SiO2 nanoparticulate film as an example. The results demonstrate that these methods are useful for studying thermal fluctuations in perpendicular recording media.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []