Simulation Study on Single-Event Burnout in Rated 1.2-kV 4H-SiC Super-Junction VDMOS

2021 
This article presents the 2-D numerical simulation results of the heavy-ion-induced leakage current degradation and single-event burnout (SEB) in the rated 1.2-kV silicon-carbide (SiC) super-junction (SJ) vertical diffusion metal-oxide-semiconductor (VDMOS). The employed simulation physics models were validated by the heavy-ion irradiation experiments of the commercially rated 1.2-kV SiC common VDMOS (C-VDMOS), which indicated a severe degeneration threshold of 500 V. The SiC common SJ VDMOS (C-SJ VDMOS) was proven to be sensitive to high-energy heavy-ion and represents comparative SEB performance compared with the SiC C-VDMOS. The robustness of the SiC SJ VDMOS with different single buffer layer (SBL) designs against a heavy-ion was simulated. It is found that the maximum temperature in the source metal/SiC interface and bottom of the structure could be compromised by the thickness of the buffer layer. As a result, the SiC SJ VDMOS with an optimal SBL exhibited a severe degeneration threshold of 800 V, which was a 60% increase compared to the SiC C-SJ VDMOS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []