[Isolation of Heavy Metal Immobilizing and Plant Growth-Promoting Bacteria and Its Effects on Reducing Heavy Metal Accumulation in Wheat].

2019 
: The effects of heavy metal contamination on farmland continues to worsen progressively with an increase in anthropogenic activities such as industrial pollution and mining. Excess Cd and Pb in agricultural soils enter the food chain and adversely affect all organisms. Therefore, it is important to find an eco-friendly way to reduce heavy metal accumulation in crops. Based on their heavy metal resistance and growth-promoting characteristics, functional bacterial strains were screened and their effects on growth and heavy metal accumulation in wheat were verified via shaking flask adsorption and sand culture tests. Eighteen functional strains were isolated from the rhizospheric soil of Salvia setaria. Among them, Bacillus megaterium N3 and Serratia liquefaciens H12 were most effective at resisting high Cd (650 mg·L-1) and Pb (2700 mg·L-1) concentrations, and at producing indole-3-acetic acid (IAA) (56.6 mg·L-1and 69.1 mg·L-1, respectively), siderophores, and 1-Amino-1-cyclopropanecarboxylic acid (ACC) deaminase. Static incubation experiments showed that strains N3 and H12 significantly increased the NH4+ concentration and pH, and decreased the Cd (63.1%-73.8%) and Pb (69.1%-81.8%) concentration in solution. In sand cultures, strains N3 and H12 not only increased the dry weight of wheat roots (47.2%-97.4%) and shoots (65.3%-153%) significantly, but also significantly reduced the Cd (49.2%-68.3%) and Pb (27.4%-84.5%) content in wheat roots and shoots. Thus, the results provide strain resources and a theoretical basis for the remediation of Cd- and Pb-contaminated farmlands for the safer production of crops.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []