The optomechanical design of the Quad-Camera W-sensing Stellar Speckle Interferometer (QWSSI)

2020 
The Quad-camera Wavefront-sensing Six-channel Speckle Interferometer (QWSSI) is a new speckle imaging instrument available on the 4.3-m Lowell Discovery Telescope (LDT). QWSSI is built to efficiently make use of collected photons and available detector area. The instrument images on a single Electron Multiplying CCD (EMCCD) at four wavelengths in the optical (577, 658, 808, and 880nm) with 40nm bandpasses. Longward of 1µm, two imaging wavelengths in the NIR are collected at 1150 and 1570nm on two InGaAs cameras with 50nm bandpasses. All remaining non-imaging visible light is then sent into a wavefront EMCCD. All cameras are operated synchronously via concurrent triggering from a timing module. With the simultaneous wavefront sensing, QWSSI characterizes atmospheric aberrations in the wavefront for each speckle frame. This results in additional data that can be utilized during post-processing, enabling advanced techniques such as Multi-Frame Blind Deconvolution. The design philosophy was optimized for an inexpensive, rapid build; virtually all parts were commercial-off-the-shelf (COTS), and custom parts were fabricated or 3D printed on-site. QWSSI’s unique build and capabilities represent a new frontier in civilian high-resolution speckle imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []