Effects of (Li0.5Sm0.5)/W co-substitution and sintering temperature on the structure and electrical properties of ultrahigh Curie temperature piezoceramics, Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9

2021 
Abstract With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ∼948 °C, d33 of ∼17.3 pC/N and ρb of ∼6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    1
    Citations
    NaN
    KQI
    []