Strong biomechanical relationships bias the tempo and mode of morphological evolution

2018 
Imagine going for a swim on a shallow reef. You might see mantis shrimp striking at fish or snails, and reef fish gulping down smaller fish and plankton. Despite how different these movements are, rapid mantis shrimp strikes and fish suction are guided by the same mechanics: four-bar linkages. These shared mechanical systems evolved independently, much like the wings of birds and butterflies. Certain researchers study how organisms evolve based on biomechanics, the field of science that applies principles from mechanics to study biological systems. Four-bar linkages, which are widespread in nature, consist of a loop made of four bars (or links) connected by four joints. The system allows a wide range of motions, and it is found anywhere from oil pumpjacks to the inside of the human knee. Researchers are interested in how similar mechanical systems like four-bar linkages influence the diversification of distantly related organisms, such as fish and crustaceans. Changes in an element of a four-bar linkage can have widely different consequences because of a phenomenon known as mechanical sensitivity. Modifications of highly mechanically sensitive parts will have a dramatic effect on the system, while alterations in other areas have little or no effect. Whether the most mechanically sensitive parts evolve faster or slower than the less sensitive elements is still up for debate. Changes in the sensitive elements could be severely constrained because these modifications may compromise the survival of the organisms. However, they could also help species adapt quickly to new environments. So far, researchers have found that in the four-bars linkage of the mantis shrimp, the most mechanically sensitive parts evolve the fastest. Yet, it was unclear whether this would also apply to other species. Here, Munoz et al. compared four-bar linkages in three families of fish and in mantis shrimp, and discovered that the most mechanically sensitive elements are the smallest links. These can undergo changes in length that have a strong impact on how the linkage works. In addition, evolutionary analyses showed that the most mechanically sensitive parts do indeed evolve the fastest in both mantis shrimp and fish. More work is now required to see if this pattern holds across various organisms, and if it can be considered as a general principle that drives evolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    21
    Citations
    NaN
    KQI
    []