Customizing the Shape and Microenvironment Biochemistry of Biocompatible Macroscopic Plant-Derived Cellulose Scaffolds

2018 
Plant-derived cellulose scaffolds constitute a highly viable and interesting biomaterial. They retain a high flexibility in shape and structure, present the ability to tune surface biochemistry, display a high degree of biocompatibility, exhibit vascularization, and are widely available and easily produced. What is also immediately clear is that pre-existing cellulose structures in plants can also provide candidates for specific tissue engineering applications. Here, we report a new preparation and fabrication approach for producing large scale scaffolds with customizable macroscopic structures that support cell attachment and invasion both in vitro and in vivo. This new fabrication method significantly improves cell attachment compared to that in our previous work. Moreover, the materials remain highly biocompatible and retain vascularization properties in vivo. We present proof-of-concept studies that demonstrate how hydrogels can be temporarily or permanently cast onto the macroscopic scaffolds to crea...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    43
    Citations
    NaN
    KQI
    []