Estimation of Effective Reproduction Number for COVID-19 in Bangladesh and its districts

2020 
Background Bangladesh is going through an unprecedented crisis since the onset of the COVID-19 pandemic. Throughout the COVID-19 pandemic, the reproduction number of COVID-19 swarmed in the scientific community and public media due to its simplicity in explaining an infectious disease dynamic. This paper aims to estimate the effective reproduction number (Rt) for COVID-19 over time in Bangladesh and its districts using reported cases. Methods Adapted methods derived from Bettencourt and Ribeiro (2008), which is a sequential Bayesian approach using the compartmental Susceptible-Infectious-Recovered (SIR) model, have been used to estimate Rt. Findings As of July 21, the mean Rt is 1.32(0.98-1.70, 90% HDI), with a median of 1.16(0.99-1.34 90% HDI). The initial Rt of Bangladesh was 3, whereas the Rt on the day of imposing nation-wide lockdown was 1.47, at the end of lockdown phase 1 was 1.06, at the end of lockdown phase 2 was 1.33. Each phase of nation-wide lockdown has contributed to the decline of effective reproduction number (Rt) for Bangladesh by 28.44%, and 26.70%, respectively, implying moderate effectiveness of the epidemic response strategies. Interpretation and Conclusion The mean Rt fell by 13.55% from May 31 to July 21, 2020, despite easing of lockdown in Bangladesh. The Rt continued to fall below the threshold value one steadily from the beginning of July and sustained around 1. The mean Rt fell by 13.55% from May 31 to July 21, 2020, despite easing of lockdown in Bangladesh. As of July 21, the current estimate of Rt is 1.07(0.92-1.15: 90% HDI), meaning that an infected individual is spreading the virus to an average of one other, with 0.07 added chance of infecting a second individual. This whole research recommends two things- broader testing and careful calibration of measures to keep Rt a long way below the crucial threshold one.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []