Identification of a cell-type-specific transcriptional repressor in the promoter region of the mouse hepatocyte growth factor gene.

1994 
Abstract Hepatocyte growth factor (HGF), a cytokine with multiple functions, exhibits cell-type-specific as well as cytokine- and steroid hormone-regulated expression. The HGF gene is known to be expressed predominately in mesenchymal but not in epithelial cells. In this study, we report the identification of a cell-type-specific transcriptional repressor in the promoter region of the mouse HGF gene, which is evidently responsible for the suppression of HGF expression in epithelial cells. Gel mobility shift assays and DNase I footprinting studies revealed that a 27-bp element (-16 to +11) around the transcription initiation site is responsible for the binding of a nuclear protein which is present in epithelial but not in mesenchymally derived cells. Further analysis of the binding activity of the DNA region with nuclear protein revealed that an approximately 19-bp sequence containing a unique palindromic structure (5'-AACCGACCGGTT-3') overlapped by a CAP box is essential for binding. Substitution of a single base (the contact site) within this region by site-directed mutagenesis resulted in total abrogation of the binding of the nuclear protein and a concomitant increase in the transcriptional activity of various lengths of HGF-chloramphenicol acetyltransferase fused genes when transfected into the epithelial cell line RL95-2 but not the mesenchymal cell line NIH 3T3. Southwestern (DNA-protein) analyses revealed that the nuclear protein which binds to this repressor element is a single polypeptide of approximately 70 kDa. Analysis of the nuclear extract prepared from regenerating mouse liver at various times after two-thirds partial hepatectomy by gel mobility shift assay revealed a substantial reduction (more than 75% within 3 h) in the binding of the repressor to its cognate binding site. Our results suggest that a cis-acting transcriptional repressor in the promoter region of the mouse HGF gene is involved in cell-type-specific regulation through binding to its cognate trans-acting protein which exists in epithelial cells but is absent in fibroblast cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    28
    Citations
    NaN
    KQI
    []