Deficits in cognitive control, timing and reward sensitivity appear to be dissociable in ADHD.

2012 
Recent neurobiological models of ADHD suggest that deficits in different neurobiological pathways may independently lead to symptoms of this disorder. At least three independent pathways may be involved: a dorsal frontostriatal pathway involved in cognitive control, a ventral frontostriatal pathway involved in reward processing and a frontocerebellar pathway related to temporal processing. Importantly, we and others have suggested that disruptions in these three pathways should lead to separable deficits at the cognitive level. Furthermore, if these truly represent separate biological pathways to ADHD, these cognitive deficits should segregate between individuals with ADHD. The present study tests these hypotheses in a sample of children, adolescents and young adults with ADHD and controls. 149 Subjects participated in a short computerized battery assessing cognitive control, timing and reward sensitivity. We used Principal Component Analysis to find independent components underlying the variance in the data. The segregation of deficits between individuals was tested using Loglinear Analysis. We found four components, three of which were predicted by the model: Cognitive control, reward sensitivity and timing. Furthermore, 80% of subjects with ADHD that had a deficit were deficient on only one component. Loglinear Analysis statistically confirmed the independent segregation of deficits between individuals. We therefore conclude that cognitive control, timing and reward sensitivity were separable at a cognitive level and that deficits on these components segregated between individuals with ADHD. These results support a neurobiological framework of separate biological pathways to ADHD with separable cognitive deficits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    52
    Citations
    NaN
    KQI
    []