Many-particle quantum hydrodynamics: Exact equations and pressure tensors

2018 
In the first part of this paper, the many-particle quantum hydrodynamics (MPQHD) equations for a system containing many particles of different sorts are derived exactly from the many-particle Schr\"odinger equation. It includes the derivation of the many-particle continuity equations (MPCE), many-particle Ehrenfest equations of motion (MPEEM), and many-particle Bohmian equations of motion (MPBEM) for any of the different particle sorts and for the total particle ensemble. The new point in our analysis is that we consider a set of arbitrary particles of different sorts in the system. In MPBEMs, there appears a quantity called pressure tensor. In the second part of this paper, we analyze two versions of this tensor in depth -- the Wyatt pressure tensor and the Kuzmenkov pressure tensor. There are different versions because there is a gauge freedom for the pressure tensor similar to that for potentials. We find that the interpretation of all quantities contributing to the Wyatt pressure tensor is understandable but for the Kuzmenkov tensor, it is difficult. Furthermore, the transformation from Cartesian coordinates to cylindrical coordinates for the Wyatt tensor can be done in a clear way, but for the Kuzmenkov tensor, it is rather cumbersome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    1
    Citations
    NaN
    KQI
    []