Optimal assignment for the single-household shared autonomous vehicle problem

2020 
Abstract Autonomous vehicles have the potential to transform the way people are transported. While driverless technology may mean fewer vehicles are required to transport people to and from their daily activities, such changes may result in increased congestion or total miles traveled. In this study, we solve the single-household shared autonomous vehicle problem to identify cost-optimal routings of vehicles throughout the day. Such a tool will be useful for consumers seeking to minimize cost and for regulators seeking to understand and predict how people may behave in different scenarios. We provide a thorough literature review and construct a mixed-integer linear program to minimize the daily travel cost of a household attending a given set of activities. Since solution time is a determinant for applicability of such a model, we present the model in a component-wise fashion. This approach allows us to understand which features most affect the problem complexity and solution time. We note that modeling carpooling is the feature that most increases time to find an optimal solution, and we therefore propose a novel modeling technique for carpooling two people. We illustrate the performance of our model by comparing it with other models from the literature and note that our model can solve significantly larger problem instances and in a time that is short enough to facilitate real-time scheduling. We also highlight the utility of our model for regulators, who can use it to analyze quickly produced optimal routes under different cost/tax scenarios.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []