Spatial and temporal variability in the nutritional quality of basal resources along a temperate river/estuary continuum

2018 
Abstract The nature and quality of basal resources within aquatic food webs are complex and have the potential to shift over space and time. We used fatty acid analysis to assess variations in the nutritional structure of the suspended and basal pools along an entire river system, and to assess the contributions of vascular plant (i.e., mainly of terrestrial origin, but could include aquatic macrophytes) vs algal (i.e., aquatic origin) sources to the suspended particulate matter (SPM) pools. Samples were collected in a temperate South African river on four occasions between September 2012 and June 2013. We found orderly patterns in the fatty acid composition of the basal resources at the sites during most seasons. Regardless of site or season, the benthic algal pools (epiphyton, epipelon and epilithon) were the most nutritionally rich resources based on essential fatty acid contents and diatom indices. During early and late spring, proportions of essential fatty acids in the epiphyton decreased downstream where increased light was available, consistent with predictions from the light:nutrient hypothesis (but inconsistent with epilithon and epipelon results). There were substantial changes in vascular plant contributions to the SPM pools along the river, but the same patterns were not produced in all seasons. Of all the river models considered, the data were more consistent with the riverine productivity model, which particularly emphasises the importance of autotrophic production in rivers. Our study provides new detail on the complexity of basal resource nutritional quality and how it can shift along a lotic system over time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    6
    Citations
    NaN
    KQI
    []