Air-Sea Exchange of Biogenic Volatile Organic Compounds and the Impact on Aerosol Particle Size Distributions

2017 
We report simultaneous, underway eddy covariance measurements of the vertical flux of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene sea-to-air vertical fluxes were significantly lower than mean DMS fluxes. While rare, intense monoterpene sea-to-air fluxes were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical flux and short wave radiation was not observed, suggesting that photochemical processes in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (P_(SOA)) for mean isoprene and monoterpene emission rates sampled here indicate that P_(SOA) is on average <0.1 µg m^(-3)d^(-1). Despite modest P_(SOA), low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    27
    Citations
    NaN
    KQI
    []