Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma

2020 
Abstract Background Air pollutants are important factors that contribute to the development and exacerbation of asthma, but experimental evidence still needs to be collected and the mechanisms still need to be addressed. In this study, we aimed to assess the association between PM2.5 exposure and asthma development. The effects of PM2.5 exposure on the barrier functions of airway epithelial cells were also determined. Methods PM2.5 was collected from Nanjing, China, and its soluble extract was prepared. Human lung epithelial cells (BEAS-2B) were treated with different concentrations of soluble PM2.5 extract, and cell viability was detected by FACS using Annexin V-FITC staining. PM2.5-induced oxidative stress and inflammatory events were assessed by DCF-DA staining and qPCR. PM2.5-induced dysfunction of the airway epithelial barrier was assessed by measuring the expression of tight junction molecules. In vivo, BALB/c mice were treated with OVA in the presence or absence of PM2.5 solution, followed by exposure to OVA aerosols. Allergy-induced airway inflammation and lung injury were assessed by histopathological analyses. Results Soluble PM2.5 extract exposure in vitro decreased the viability and increased apoptosis of airway epithelial cells. Soluble PM2.5 extract induced oxidative stress and enhanced pro-inflammatory factor expression by activating the NF-κB and MAPK signalling pathways, which were accompanied by reduced airway barrier function. The in vivo data demonstrated that PM2.5 exposure increased the effects of allergy sensitization after respiratory exposure to allergens, which led to the development of asthma. Conclusion This study suggests that exposure to soluble PM2.5 extract contributes to airway barrier dysfunction. The soluble mediators generated by airway epithelial cells in response to PM2.5 exposure orchestrate the breaking of inhalational tolerance and sensitization to allergic antigens, leading to the exacerbated development of asthma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    19
    Citations
    NaN
    KQI
    []