The GRAVITY Young Stellar Object survey VIII. Gas and dust faint inner rings in the hybrid disk of HD141569

2021 
The formation and evolution of planetary systems impact the primordial accretion disk. HD141569 is the only known pre-main sequence star characterized by a hybrid disk. Observations probed the outer-disk structure showing a complex system of rings and interferometric observations attempted to characterize its inner 5 au region, but derived limited constraints. The goal of this work was to explore with new high-resolution interferometric observations the properties of the dust and gas in the internal regions of HD141569. We observed HD141569 on mas scales with GRAVITY/VLTI in the near-infrared at low and high spectral resolution. We interpreted the visibilities and spectral energy distribution with geometrical models and radiative transfer techniques to constrain the dust emission. We analyzed the high spectral resolution quantities to investigate the properties of the Br-Gamma line emitting region. Thanks to the combination of three different epochs, GRAVITY resolves the inner dusty disk in the K band. Data modeling shows that an IR excess of about 6% is spatially resolved and that the origin of this emission is confined in a ring of material located at a radius of 1 au from the star with a width smaller than 0.3 au. The MCMax modeling suggests that this emission could originate from a small amount of QHPs, while large silicate grain models cannot reproduce at the same time the observational constraints on the properties of near-IR and mid-IR fluxes. The differential phases in the Br-Gamma line clearly show an S-shape that can be best reproduced witha gas disk in Keplerian rotation, confined within 0.09 au. This is also hinted at by the double-peaked Br-Gamma emission line shape. The modeling of the continuum and gas emission shows that the inclination and position angle of these two components are consistent with a system showing relatively coplanar rings on all scales.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []