Super Resolution Network Analysis Defines the Molecular Architecture of Caveolae and Caveolin-1 Scaffolds

2018 
Quantitative approaches to analyze the large data sets generated by single molecule localization super-resolution microscopy (SMLM) are limited. We developed a computational pipeline and applied it to analyzing 3D point clouds of SMLM localizations (event lists) of the caveolar coat protein, caveolin-1 (Cav1), in prostate cancer cells differentially expressing CAVIN1 (also known as PTRF), that is also required for caveolae formation. High degree (strongly-interacting) points were removed by an iterative blink merging algorithm and Cav1 network properties were compared with randomly generated networks to retain a sub-network of geometric structures (or blobs). Machine-learning based classification extracted 28 quantitative features describing the size, shape, topology and network characteristics of ∼80,000 blobs. Unsupervised clustering identified small S1A scaffolds corresponding to SDS-resistant Cav1 oligomers, as yet undescribed larger hemi-spherical S2 scaffolds and, only in CAVIN1-expressing cells, spherical, hollow caveolae. Multi-threshold modularity analysis suggests that S1A scaffolds interact to form larger scaffolds and that S1A dimers group together, in the presence of CAVIN1, to form the caveolae coat.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    27
    Citations
    NaN
    KQI
    []