Command Filter-Based Adaptive Neural Control Design for Nonstrict-Feedback Nonlinear Systems With Multiple Actuator Constraints.

2021 
This article proposes an adaptive neural-network command-filtered tracking control scheme of nonlinear systems with multiple actuator constraints. An equivalent transformation method is introduced to address the impediment from actuator nonlinearity. By utilizing the command filter method, the explosion of complexity problem is addressed. With the help of neural-network approximation, an adaptive neural-network tracking backstepping control strategy via the command filter technique and the backstepping design algorithm is proposed. Based on this scheme, the boundedness of all variables is guaranteed and the output tracking error fluctuates near the origin within a small bounded area. Simulations testify the availability of the designed control strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []