Domain Stability Regulated through the Dimer Interface Controls the Formation Kinetics of a Specific NF-κB Dimer

2021 
The NF-κB family of transcription factors is a key regulator of the immune response in the vertebrates. The family comprises five proteins that function as dimers formed in various combinations among the members, with the RelA-p50 dimer being physiologically the most abundant. While most of the 15 possible dimers are scarcely present in the cell with some remaining experimentally undetected to date, there are specific gene sets that are only activated by certain sparsely populated NF-κB dimers. The mechanism of transcription activation of such specific genes that are activated only by specific NF-κB dimers remains unclear. Here we show that the dimer interfacial residues control the stabilization of the global hydrogen bond network of the NF-κB dimerization domain, which, in turn, controls the thermodynamic stabilization of different NF-κB dimers. The relatively low thermodynamic stability of the RelA-RelA homodimer is critical as it facilitates the formation of the more stable RelA-p50 heterodimer. Through the modulation of the thermodynamic stability of the RelA-RelA homodimer, the kinetics of the RelA-p50 heterodimer formation can be regulated. This phenomenon provides an insight into the mechanism of RelA-RelA specific target gene regulation in physiology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []