In Situ Formation of Microfibrillar Crystalline Superstructure: Achieving High-Performance Polylactide

2017 
As a biobased and biodegradable polyester, polylactide (PLA) is widely applied in disposable products, biomedical devices, and textiles. Nevertheless, due to its inherent brittleness and inferior strength, simultaneously reinforcing and toughening of PLA without sacrificing its biodegradability is highly desirable. In this work, a robust assembly consisting of compact and well-ordered microfibrillar crystalline superstructure (FCS) surrounded by slightly oriented amorphism, is achieved by a combined external force field. Unlike the classic crystalline superstructures such as shish-kebabs, cylindrites, and lamellae, the newfound FCS with diameter of about 100 nm and length of several tens of micrometers is aggregated with well-aligned crystalline nanofibers. FCS can serve as discontinuous fiber to self-reinforce the amorphous PLA; more importantly, FCS can also act as rivets to pin the propagating fibrillar crazes leading to the formation of dense fibrillar crazes during stretching, which dissipates much e...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    43
    Citations
    NaN
    KQI
    []