Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18‐1

2016 
Abstract Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal‐regulated kinase (ERK) that mediates CB1R‐ and mGluR2/3‐induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock‐induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18‐1. Mimicking constitutive phosphorylation of Munc18‐1 results in a drastic decrease in synaptic transmission. ERK‐mediated phosphorylation of Munc18‐1 ultimately leads to degradation by the ubiquitin–proteasome system. Conversely, preventing ERK‐dependent Munc18‐1 phosphorylation increases synaptic strength. CB1R‐ and mGluR2/3‐induced synaptic inhibition and depolarization‐induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK‐dependent Munc18‐1 phosphorylation is blocked. Thus, ERK‐dependent Munc18‐1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    25
    Citations
    NaN
    KQI
    []