Force generation and shift of mass between myosin and actin in skinned striated muscle fibres at low calcium concentrations

1998 
Skinned muscle fibres from the gracilis muscle of the rabbit were used to record small angle X-ray diffraction spectra under various contractile conditions. The intracellular calcium concentration, expressed as pCa, was varied between 8.0 and 5.74. Equatorial diffraction spectra were fitted by a function consisting of five Gaussian curves and a hyperbola to separate the (1.0), (1.1), (2.0), (2.1) and Z-line diffraction peaks. The hyperbola was used to correct for residual scattering in the preparation. The ratio between the intensities of the (1.1) and (1.0) peaks was defined as the relative transfer of mass between myosin and actin, due to crossbridge formation after activation by calcium. The relation between the ratio and the relative force of the fibre (normalized to the force at pCa 5.74 and sarcomere length 2.0 μm) was linear. At high pCa (from pCa 6.34 to 8.0) no active force was observed, while the ratio still decreased. Sarcomere length was recorded by laser diffraction. The laser diffraction patterns did not show changes in sarcomere length due to activation in the high pCa range (between 8.0 and 6.34). From these results the conclusion is drawn that crossbridge movement occurs even at subthreshold calcium concentrations in the cell, when no active force is exerted. Since no force is generated this movement may be related to crossbridges in the weakly bound state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []