Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession

2019 
Abstract A consortium of key bacterial taxa plays critical roles in the composting process. In order to elucidate the identity and mechanisms by which specific bacterial species drive high-efficiency composting, the succession of key bacterial consortia and extracellular enzymes produced during the composting process were monitored in composting piles with varying initial C/N ratios. Results showed that C/N ratios of 25 and 35 enhanced composting efficiency through elevated temperatures, higher germination indices, enhanced cellulose and hemicellulose degradation, and higher cellulase and dehydrogenase activities. The activities of cellulase and β-glucosidase, cellulase and protease, and cellulase and β-glucosidase exhibited significant relationships with bacterial community composition within the mesophilic, thermophilic, and mature phases, respectively. Putative key taxa, linked to a higher composting efficiency, such as Nonomuraea, Desemzia, Cellulosimicrobium, Virgibacillus, Clostridium, and Achromobacter, exhibited significantly positive relationships with extracellular enzyme activities, suggesting a significant contribution to these taxa to the development of composting maturity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    21
    Citations
    NaN
    KQI
    []