EFFECTS OF VARIATION IN INTERCELLULAR ELECTRICAL COUPLING ON SYNAPTIC POTENTIALS IN SMOOTH MUSCLE: A COMPUTATIONAL STUDY

2001 
We have computationally explored the effect of quantitative variations in the extent of cell-to-cell electrical coupling on the synaptic potentials generated in smooth muscle. Neuronally produced spontaneous excitatory junction potentials (SEJPs) generated in a cubical “bidomainmodel of syncytial tissue were simulated computationally. It was found that SEJP properties vary conspicuously as the principal parameter of interest, the cell–to–cell coupling resistance, Ri, is altered. For example, on increasing Ri, SEJP peak amplitudes at node zero (the node of generation) increase dramatically, while amplitudes at nodes 1 and 2 (which are passively depolarized) become progressively lower fractions of the amplitude of the zeroeth-node SEJP. The time to peak of the SEJPs also increases concomitantly when Ri is elevated. These observations indicate the nature of variations in synaptic potentials that would be expected under conditions of altered intercellular electrical coupling in smooth muscle. We discuss the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    2
    Citations
    NaN
    KQI
    []