Low percolation density and charge noise with holes in germanium.

2020 
We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot operation by positioning the strained Ge channel 55~nm below the semiconductor/dielectric interface. In heterostructure field effect transistors, we measure a percolation density for two-dimensional hole transport of $2.1\times10^{10}~\text{cm}^{-2}$, indicative of a very low disorder potential landscape experienced by holes in the buried Ge channel. These Ge heterostructures support quiet operation of hole quantum dots and we measure charge noise levels that are below the detection limit $\sqrt{S_\text{E}}=0.2~\mu \text{eV}/\sqrt{\text{Hz}}$ at 1 Hz. These results establish planar Ge as a promising platform for scaled two-dimensional spin qubit arrays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []