Free-breathing simultaneous T1 , T2 , and T2∗ quantification in the myocardium.

2021 
Purpose To implement a free-breathing sequence for simultaneous quantification of T 1 , T 2 , and T 2 ∗ for comprehensive tissue characterization of the myocardium in a single scan using a multi-gradient-echo readout with saturation and T 2 preparation pulses. Methods In the proposed Saturation And T 2 -prepared Relaxometry with Navigator-gating (SATURN) technique, a series of multi-gradient-echo (GRE) images with different magnetization preparations was acquired during free breathing. A total of 35 images were acquired in 26.5 ± 14.9 seconds using multiple saturation times and T 2 preparation durations and with imaging at 5 echo times. Bloch simulations and phantom experiments were used to validate a 5-parameter fit model for accurate relaxometry. Free-breathing simultaneous T 1 , T 2 , and T 2 ∗ measurements were performed in 10 healthy volunteers and 2 patients using SATURN at 3T and quantitatively compared to conventional single-parameter methods such as SASHA for T 1 , T 2 -prepared bSSFP, and multi-GRE for T 2 ∗ . Results Simulations confirmed accurate fitting with the 5-parameter model. Phantom measurements showed good agreement with the reference methods in the relevant range for in vivo measurements. Compared to single-parameter methods comparable accuracy was achieved. SATURN produced in vivo parameter maps that were visually comparable to single-parameter methods. No significant difference between T 1 , T 2 , and T 2 ∗ times acquired with SATURN and single-parameter methods was shown in quantitative measurements (SATURN T 1 = 1573 ± 86 ms , T 2 = 33.2 ± 3.6 ms , T 2 ∗ = 25.3 ± 6.1 ms ; conventional methods: T 1 = 1544 ± 107 ms , T 2 = 33.2 ± 3.6 ms , T 2 ∗ = 23.8 ± 5.5 ms ; P > . 2 ) CONCLUSION: SATURN enables simultaneous quantification of T 1 , T 2 , and T 2 ∗ in the myocardium for comprehensive tissue characterization with co-registered maps, in a single scan with good agreement to single-parameter methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    0
    Citations
    NaN
    KQI
    []