Cyan-emitting Ba0.45Ca2.5La6(SiO4)6: 0.05 Eu2+ and Ba1.45Ca1.5La6(SiO4)6:0.05 Eu2+ Solid-solution Phosphors for White Light-emitting Diodes

2021 
Abstract Two cyan-emitting phosphors with different bandwidths were successfully synthesized through the high-temperature solid-state method in a reducing atmosphere. The crystal structures, morphologies, and luminescence properties of the as-prepared phosphors were investigated. The Rietveld refinements of the powder X-ray diffraction (XRD) data demonstrated the single phase of the samples, and two crystallographic sites of La3+ were observed in the crystal structure. Under the excitation of UV light, both Ba0.45Ca2.5La6(SiO4)6: 0.05 Eu2+ and Ba1.45Ca1.5La6(SiO4)6: 0.05 Eu2+ phosphors emitted cyan light due to the 4f65 d1→4f7 transitions of the Eu2+ ion. The emission spectra could be well fitted by two component Gaussian peaks corresponding to two different coordination environments of the Eu2+ ions. The temperature-dependent photoluminescence spectra show a large difference on the thermal stability between the two phosphors. The two phosphors exhibit effective absorption of near-UV light and their internal quantum efficiencies (IQEs) were calculated as 31.5% and 42.4% under 295 nm UV-light excitation. The experimental results indicate that the novel cyan phosphors might have potential applications in white light-emitting diodes (LEDs) based on the near-UV LED chip.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []